Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352478

RESUMO

Engrams or memory traces are the neuronal ensembles that collectively store individual experiences. Genetic strategies based on immediate early genes (IEGs), such as Arc/Arg3.1 , allow us to tag the ensembles active during memory encoding and compare them to those active during retrieval. However, these strategies only allow for the tagging of one neural ensemble. Here, we developed a multiple Arc (mArc) system that allows for the tagging of two Arc + ensembles. We validated this system by investigating how context, time, and valence influence neuronal ensemble reactivation in the dentate gyrus (DG). We show that similar contextual and valenced experiences are encoded in overlapping DG ensembles. We also find that ensembles are modulated by time, where experiences closer in time are encoded in more similar ensembles. These results highlight the dynamic nature of DG ensembles and show that the mArc system provides a powerful approach for investigating multiple memories in the brain. HIGHLIGHTS: The mArc system allows for the tagging of two Arc + ensembles in the same mouse DG ensembles labeled by the mArc system receive increased excitatory inputContext, valence, and time influence DG ensemble reactivationDG neural ensembles are reactivated less with increasing time.

2.
Biol Psychiatry ; 95(1): 15-26, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423591

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization and the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS: To identify the neural ensembles mediating fear generalization, we utilized ArcCreERT2 × enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact model of TBI. Mice were then administered a contextual fear discrimination paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if (R,S)-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS: TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the dentate gyrus, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, (R,S)-ketamine facilitated fear discrimination, and this behavioral improvement was reflected in dentate gyrus memory trace activity. CONCLUSIONS: These data show that TBI induces fear generalization by altering fear memory traces and that this deficit can be improved with a single injection of (R,S)-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.


Assuntos
Lesões Encefálicas Traumáticas , Ketamina , Camundongos , Animais , Ketamina/farmacologia , Hipocampo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Medo , Encéfalo , Camundongos Endogâmicos C57BL
3.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076870

RESUMO

Standard antidepressant treatments often take weeks to reach efficacy and are ineffective for many patients. ( R,S )-ketamine, an N -methyl-D-aspartate (NMDA) antagonist, has been shown to be a rapid-acting antidepressant and to decrease depressive symptoms within hours of administration. While previous studies have shown the importance of the NR2B subunit of the NMDA receptor (NMDAR) on interneurons in the medial prefrontal cortex (mPFC), no study has investigated the influence of NR2B-expressing adult-born granule cells (abGCs). In this study, we examined whether ( R,S )-ketamine's efficacy depends upon these adult-born hippocampal neurons using a genetic strategy to selectively ablate the NR2B subunit of the NMDAR from Nestin + cells. To validate our findings, we also used several other transgenic lines including one in which NR2B was deleted from an interneuron (Parvalbumin (PV) + ) population. We report that in male mice, NR2B expression on 6-week-old adult-born neurons is necessary for ( R,S )-ketamine's effects on behavioral despair in the forced swim test (FST) and on hyponeophagia in the novelty suppressed feeding (NSF) paradigm, as well on fear behavior following contextual fear conditioning (CFC). In female mice, NR2B expression is necessary for effects on hyponeophagia in the NSF. We also find that ablating neurogenesis increases fear expression in CFC, which is buffered by ( R,S )-ketamine administration. In line with previous studies, these results suggest that 6-week-old adult-born hippocampal neurons expressing NR2B partially modulate ( R,S )-ketamine's rapid-acting effects. Future work targeting these 6-week-old adult-born neurons may prove beneficial for increasing the efficacy of ( R , S )-ketamine's antidepressant actions.

4.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808799

RESUMO

BACKGROUND: Serotonin (5-HT) receptors and N -methyl-D-aspartate receptors (NMDARs) have both been implicated in the pathophysiology of depression and anxiety disorders. Here, we evaluated whether targeting both receptors through combined dosing of ( R , S )-ketamine, an NMDAR antagonist, and prucalopride, a serotonin type IV receptor (5-HT 4 R) agonist, would have additive effects, resulting in reductions in stress-induced fear, behavioral despair, and hyponeophagia. METHODS: A single injection of saline (Sal), ( R , S )-ketamine (K), prucalopride (P), or a combined dose of ( R , S )-ketamine and prucalopride (K+P) was administered before or after contextual fear conditioning (CFC) stress in both sexes. Drug efficacy was assayed using the forced swim test (FST), elevated plus maze (EPM), open field (OF), marble burying (MB), and novelty-suppressed feeding (NSF). Patch clamp electrophysiology was used to measure the effects of combined drug on neural activity in hippocampal CA3. c-fos and parvalbumin (PV) expression in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was examined using immunohistochemistry and network analysis. RESULTS: We found that a combination of K+P, given before or after stress, exerted additive effects, compared to either drug alone, in reducing a variety of stress-induced behaviors in both sexes. Combined K+P administration significantly altered c-fos and PV expression and network activity in the HPC and mPFC. CONCLUSIONS: Our results indicate that combined K+P has additive benefits for combating stress-induced pathophysiology, both at the behavioral and neural level. Our findings provide preliminary evidence that future clinical studies using this combined treatment strategy may prove advantageous in protecting against a broader range of stress-induced psychiatric disorders.

5.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503264

RESUMO

INTRODUCTION: Neuropsychiatric symptoms (NPS), such as depression and anxiety, are observed in 90% of Alzheimer's disease (AD) patients, two-thirds of whom are women. NPS usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brain-wide neuronal mechanisms. METHODS: To gain mechanistic insight into how anxiety impacts AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity utilizing the ArcCreERT2 x enhanced yellow fluorescent protein (eYFP) x APP/PS1 (AD) mice. The ADNI dataset was used to determine the impact of anxiety on AD progression in human subjects. RESULTS: Female AD mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control (Ctrl) mice and male mice. Brain-wide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in AD mice. Sex-specific memory trace changes were observed; female AD mice exhibited impaired memory traces in dorsal CA3 (dCA3), while male AD mice exhibited impaired memory traces in the dorsal dentate gyrus (dDG). In the ADNI dataset, anxiety predicted transition to dementia. Female subjects positive for anxiety and amyloid transitioned more quickly to dementia than male subjects. CONCLUSIONS: While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that AD network dysfunction is sexually dimorphic, and that personalized medicine may benefit male and female AD patients rather than a one size fits all approach.

6.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909465

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization, the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS: To identify the neural ensembles mediating fear generalization, we utilized the ArcCreER T2 x enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact (CCI) model of TBI. Mice were then administered a contextual fear discrimination (CFD) paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if ( R,S )-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS: TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the DG, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, ( R,S )-ketamine facilitated fear discrimination and this behavioral improvement was reflected in DG memory trace activity. CONCLUSIONS: These data show that TBI induces fear generalization by altering fear memory traces, and that this deficit can be improved with a single injection of ( R,S )-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.

7.
Neuropharmacology ; 224: 109345, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427554

RESUMO

Exposure to stress is one of the greatest contributing factors to developing a psychiatric disorder, particularly in susceptible populations. Enhancing resilience to stress could be a powerful intervention to reduce the incidence of psychiatric disease and reveal insight into the pathophysiology of psychiatric disorders. (R,S)-ketamine and its metabolites have recently been shown to exert protective effects when administered before or after a variety of stressors and may be effective, tractable prophylactic compounds against psychiatric disease. Drug dosing, sex, age, and strain in preclinical rodent studies, significantly influence the prophylactic effects of (R,S)-ketamine and related compounds. Due to the broad neurobiological actions of (R,S)-ketamine, a variety of mechanisms have been proposed to contribute to the resilience-enhancing effects of this drug, including altering various transcription factors across the genome, enhancing inhibitory connections from the prefrontal cortex, and increasing synaptic plasticity in the hippocampus. Promisingly, select data have shown that (R,S)-ketamine may be an effective prophylactic against psychiatric disorders, such as postpartum depression (PPD). Overall, this review will highlight a brief history of the prophylactic effects of (R,S)-ketamine, the potential mechanisms underlying its protective actions, and possible future directions for translating prophylactic compounds to the clinic. This article is part of the Special Issue on 'Ketamine and its Metabolites'.


Assuntos
Depressão Pós-Parto , Ketamina , Humanos , Feminino , Ketamina/uso terapêutico , Depressão Pós-Parto/tratamento farmacológico , Hipocampo , Córtex Pré-Frontal , Plasticidade Neuronal , Depressão/tratamento farmacológico
8.
Front Behav Neurosci ; 16: 919831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874651

RESUMO

Altered fear learning is a strong behavioral component of anxiety disorders such as post-traumatic stress disorder (PTSD). Recent efforts have attempted to combine exposure therapies with drugs that target fear memory retrieval and memory reconsolidation, in order to improve treatment efficacy. The noradrenergic (NA) signaling system is of particular interest, due to its role in regulating the stress response and its involvement in fear and learning processes. Importantly, propranolol (P), a non-selective ß-adrenergic antagonist, has shown the potential in decreasing exaggerated fear in both humans and animal models. In a previous study, we utilized an activity-dependent tagging murine model to determine the neural mechanisms by which propranolol attenuates learned fear. We found that propranolol acutely decreased memory trace reactivation specifically in the dorsal dentate gyrus (dDG), but not in CA3 or CA1. Here, we extended our previous study by investigating whether propranolol additionally altered activity in the hilus, a polymorphic layer that consists of neurons, mossy cells, and GABAergic interneurons. We found that propranolol acutely reduced overall hilar activity in both the dorsal and ventral hilus. Moreover, we report that propranolol significantly altered the activity of parvalbumin (PV)+ cells in the ventral (vDG), but not dorsal DG (dDG). Together, these results suggest that a ß-adrenergic blockade may affect the activity of excitatory and inhibitory cell types in the hilar layer of the DG, and that these alterations may contribute to manipulating fear memory traces.

9.
Front Neurosci ; 16: 852010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527817

RESUMO

(R,S)-ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that was originally developed as an anesthetic. Most recently, (R,S)-ketamine has been used as a rapid-acting antidepressant, and we have reported that (R,S)-ketamine can also be a prophylactic against stress in adult mice. However, most pre-clinical studies have been performed in adult mice. It is still unknown how an acute (R,S)-ketamine injection influences behavior across the lifespan (e.g., to adolescent or aged populations). Here, we administered saline or (R,S)-ketamine at varying doses to adolescent (5-week-old) and aged (24-month-old) 129S6/SvEv mice of both sexes. One hour later, behavioral despair, avoidance, locomotion, perseverative behavior, or contextual fear discrimination (CFD) was assessed. A separate cohort of mice was sacrificed 1 h following saline or (R,S)-ketamine administration. Brains were processed to quantify the marker of inflammation Cyclooxygenase 2 (Cox-2) expression to determine whether the acute effects of (R,S)-ketamine were partially mediated by changes in brain inflammation. Our findings show that (R,S)-ketamine reduced behavioral despair and perseverative behavior in adolescent female, but not male, mice and facilitated CFD in both sexes at specific doses. (R,S)-ketamine reduced Cox-2 expression specifically in ventral CA3 (vCA3) of male mice. Notably, (R,S)-ketamine was not effective in aged mice. These results underscore the need for sex- and age-specific approaches to test (R,S)-ketamine efficacy across the lifespan.

10.
Int J Neuropsychopharmacol ; 25(6): 512-523, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35229871

RESUMO

BACKGROUND: (R,S)-ketamine, an N-methyl-D-aspartate receptor antagonist, is frequently used as an anesthetic and as a rapid-acting antidepressant. We and others have reported that (R,S)-ketamine is prophylactic against stress in adult mice but have yet to test its efficacy in adolescent or aged populations. METHODS: Here, we administered saline or (R,S)-ketamine as a prophylactic at varying doses to adolescent (5-week-old) and aged (24-month-old) 129S6/SvEv mice of both sexes 1 week before a 3-shock contextual fear-conditioning (CFC) stressor. Following CFC, we assessed behavioral despair, avoidance, perseverative behavior, locomotion, and contextual fear discrimination. To assess whether the prophylactic effect could persist into adulthood, adolescent mice were injected with saline or varying doses of (R,S)-ketamine and administered a 3-shock CFC as a stressor 1 month later. Mice were then re-exposed to the aversive context 5 days later and administered behavioral tests as aforementioned. Brains were also processed to quantify Cyclooxygenase 2 expression as a proxy for inflammation to determine whether the prophylactic effects of (R,S)-ketamine were partially due to changes in brain inflammation. RESULTS: Our data indicate that (R,S)-ketamine is prophylactic at sex-specific doses in adolescent but not aged mice. (R,S)-ketamine attenuated learned fear and perseverative behavior in females, reduced behavioral despair in males, and facilitated contextual fear discrimination in both sexes. (R,S)-ketamine reduced Cyclooxygenase 2 expression specifically in ventral Cornu Ammonis region 3 of male mice. CONCLUSIONS: These findings demonstrate that prophylactic (R,S)-ketamine efficacy is sex, dose, and age dependent and will inform future studies investigating (R,S)-ketamine efficacy across the lifespan.


Assuntos
Ketamina , Animais , Antidepressivos/farmacologia , Ciclo-Oxigenase 2/farmacologia , Medo , Feminino , Ketamina/farmacologia , Masculino , Camundongos , Estresse Psicológico
12.
Biol Psychiatry ; 90(7): 458-472, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274107

RESUMO

BACKGROUND: Major depressive disorder is a common, recurrent illness. Recent studies have implicated the NMDA receptor in the pathophysiology of major depressive disorder. (R,S)-ketamine, an NMDA receptor antagonist, is an effective antidepressant but has numerous side effects. Here, we characterized a novel NMDA receptor antagonist, fluoroethylnormemantine (FENM), to determine its effectiveness as a prophylactic and/or antidepressant against stress-induced maladaptive behavior. METHODS: Saline, memantine (10 mg/kg), (R,S)-ketamine (30 mg/kg), or FENM (10, 20, or 30 mg/kg) was administered before or after contextual fear conditioning in 129S6/SvEv mice. Drug efficacy was assayed using various behavioral tests. Protein expression in the hippocampus was quantified with immunohistochemistry or Western blotting. In vitro radioligand binding was used to assay drug binding affinity. Patch clamp electrophysiology was used to determine the effect of drug administration on glutamatergic activity in ventral hippocampal cornu ammonis 3 (vCA3) 1 week after injection. RESULTS: Given after stress, FENM decreased behavioral despair and reduced perseverative behavior. When administered after re-exposure, FENM facilitated extinction learning. As a prophylactic, FENM attenuated learned fear and decreased stress-induced behavioral despair. FENM was behaviorally effective in both male and female mice. (R,S)-ketamine, but not FENM, increased expression of c-fos in vCA3. Both (R,S)-ketamine and FENM attenuated large-amplitude AMPA receptor-mediated bursts in vCA3, indicating a common neurobiological mechanism for further study. CONCLUSIONS: Our results indicate that FENM is a novel drug that is efficacious when administered at various times before or after stress. Future work will further characterize FENM's mechanism of action with the goal of clinical development.


Assuntos
Transtorno Depressivo Maior , Ketamina , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Feminino , Ketamina/farmacologia , Masculino , Memantina/análogos & derivados , Camundongos , Estresse Psicológico
13.
Biol Psychiatry ; 89(12): 1150-1161, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766406

RESUMO

BACKGROUND: Posttraumatic stress disorder can develop after a traumatic event and results in heightened, inappropriate fear and anxiety. Although approximately 8% of the U.S. population is affected by posttraumatic stress disorder, only two drugs have been approved by the Food and Drug Administration to treat it, both with limited efficacy. Propranolol, a nonselective ß-adrenergic antagonist, has shown efficacy in decreasing exaggerated fear, and there has been renewed interest in using it to treat fear disorders. METHODS: Here, we sought to determine the mechanisms by which propranolol attenuates fear by utilizing an activity-dependent tagging system, ArcCreERT2 x eYFP mice. 129S6/SvEv mice were administered a 4-shock contextual fear conditioning paradigm followed by immediate or delayed context reexposures. Saline or propranolol was administered either before or after the first context reexposure. To quantify hippocampal, prefrontal, and amygdalar memory traces, ArcCreERT2 x eYFP mice were administered a delayed context reexposure with either a saline or propranolol injection before context reexposure. RESULTS: Propranolol decreased fear expression only when administered before a delayed context reexposure. Fear memory traces were affected in the dorsal dentate gyrus and basolateral amygdala after propranolol administration in the ArcCreERT2 x eYFP mice. Propranolol acutely altered functional connectivity between the hippocampal, cortical, and amygdalar regions. CONCLUSIONS: These data indicate that propranolol may decrease fear expression by altering network-correlated activity and by weakening the reactivation of the initial traumatic memory trace. This work contributes to the understanding of noradrenergic drugs as therapeutic aids for patients with posttraumatic stress disorder.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Propranolol , Tonsila do Cerebelo , Animais , Medo , Humanos , Memória , Camundongos , Propranolol/farmacologia
14.
Int J Neuropsychopharmacol ; 24(6): 519-531, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33631001

RESUMO

BACKGROUND: Memantine, a noncompetitive N-methyl-D-aspartate receptor antagonist, has been approved for use in Alzheimer's disease, but an increasing number of studies have investigated its utility for neuropsychiatric disorders. Here, we characterized a novel compound, fluoroethylnormemtantine (FENM), which was derived from memantine with an extra Fluor in an optimized position for in vivo biomarker labeling. We sought to determine if FENM produced similar behavioral effects as memantine and/or if FENM has beneficial effects against fear, avoidance, and behavioral despair. METHODS: We administered saline, FENM, or memantine prior to a number of behavioral assays, including paired-pulse inhibition, open field, light dark test, forced swim test, and cued fear conditioning in male Wistar rats. RESULTS: Unlike memantine, FENM did not produce nonspecific side effects and did not alter sensorimotor gating or locomotion. FENM decreased immobility in the forced swim test. Moreover, FENM robustly facilitated fear extinction learning when administered prior to either cued fear conditioning training or tone reexposure. CONCLUSIONS: These results suggest that FENM is a promising, novel compound that robustly reduces fear behavior and may be useful for further preclinical testing.


Assuntos
Comportamento Animal/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Memantina/análogos & derivados , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Masculino , Ratos Wistar
15.
Eur J Neurosci ; 54(8): 6795-6814, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33540466

RESUMO

PKMζ is an autonomously active PKC isoform crucial for the maintenance of synaptic long-term potentiation (LTP) and long-term memory. Unlike other kinases that are transiently stimulated by second messengers, PKMζ is persistently activated through sustained increases in protein expression of the kinase. Therefore, visualizing increases in PKMζ expression during long-term memory storage might reveal the sites of its persistent action and thus the location of memory-associated LTP maintenance in the brain. Using quantitative immunohistochemistry validated by the lack of staining in PKMζ-null mice, we examined the amount and distribution of PKMζ in subregions of the hippocampal formation of wild-type mice during LTP maintenance and spatial long-term memory storage. During LTP maintenance in hippocampal slices, PKMζ increases in the pyramidal cell body and stimulated dendritic layers of CA1 for at least 2 hr. During spatial memory storage, PKMζ increases in CA1 pyramidal cells for at least 1 month, paralleling the persistence of the memory. During the initial expression of the memory, we tagged principal cells with immediate-early gene Arc promoter-driven transcription of fluorescent proteins. The subset of memory-tagged CA1 cells selectively increases expression of PKMζ during memory storage, and the increase persists in dendritic compartments within stratum radiatum for 1 month, indicating long-term storage of information in the CA3-to-CA1 pathway. We conclude that persistent increases in PKMζ trace the molecular mechanism of LTP maintenance and thus the sites of information storage within brain circuitry during long-term memory.


Assuntos
Potenciação de Longa Duração , Proteína Quinase C , Animais , Hipocampo/metabolismo , Memória de Longo Prazo , Camundongos , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Memória Espacial
16.
Neuropsychopharmacology ; 46(5): 882-890, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32919399

RESUMO

In the United States, ~1.4 million individuals identify as transgender. Many transgender adolescents experience gender dysphoria related to incongruence between their gender identity and sex assigned at birth. This dysphoria may worsen as puberty progresses. Puberty suppression by gonadotropin-releasing hormone agonists (GnRHa), such as leuprolide, can help alleviate gender dysphoria and provide additional time before irreversible changes in secondary sex characteristics may be initiated through feminizing or masculinizing hormone therapy congruent with the adolescent's gender experience. However, the effects of GnRH agonists on brain function and mental health are not well understood. Here, we investigated the effects of leuprolide on reproductive function, social and affective behavior, cognition, and brain activity in a rodent model. Six-week-old male and female C57BL/6J mice were injected daily with saline or leuprolide (20 µg) for 6 weeks and tested in several behavioral assays. We found that leuprolide increases hyperlocomotion, changes social preference, and increases neuroendocrine stress responses in male mice, while the same treatment increases hyponeophagia and despair-like behavior in females. Neuronal hyperactivity was found in the dentate gyrus (DG) of leuprolide-treated females, but not males, consistent with the elevation in hyponeophagia and despair-like behavior in females. These data show for the first time that GnRH agonist treatment after puberty onset exerts sex-specific effects on social- and affective behavior, stress regulation, and neural activity. Investigating the behavioral and neurobiological effects of GnRH agonists in mice will be important to better guide the investigation of potential consequences of this treatment for youth experiencing gender dysphoria.


Assuntos
Pessoas Transgênero , Adolescente , Animais , Feminino , Identidade de Gênero , Hormônio Liberador de Gonadotropina , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Puberdade , Estados Unidos
17.
Neuropsychopharmacology ; 45(9): 1545-1556, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417852

RESUMO

Enhancing stress resilience in at-risk populations could significantly reduce the incidence of stress-related psychiatric disorders. We have previously reported that the administration of (R,S)-ketamine prevents stress-induced depressive-like behavior in male mice, perhaps by altering α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission in hippocampal CA3. However, it is still unknown whether metabolites of (R,S)-ketamine can be prophylactic in both sexes. We administered (R,S)-ketamine or its metabolites (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) and (2S,6S)-hydroxynorketamine ((2S,6S)-HNK) at various doses 1 week before one of a number of stressors in male and female 129S6/SvEv mice. Patch clamp electrophysiology was used to determine the effect of prophylactic drug administration on glutamatergic activity in CA3. To examine the interaction between ovarian hormones and stress resilience, female mice also underwent ovariectomy (OVX) surgery and a hormone replacement protocol prior to drug administration. (2S,6S)-HNK and (2R,6R)-HNK protected against distinct stress-induced behaviors in both sexes, with (2S,6S)-HNK attenuating learned fear in male mice, and (2R,6R)-HNK preventing stress-induced depressive-like behavior in both sexes. (R,S)-ketamine and (2R,6R)-HNK, but not (2S,6S)-HNK, attenuated large-amplitude AMPAR-mediated bursts in hippocampal CA3. All three compounds reduced N-methyl-D-aspartate receptor (NMDAR)-mediated currents 1 week after administration. Furthermore, ovarian-derived hormones were necessary for and sufficient to restore (R,S)-ketamine- and (2R,6R)-HNK-mediated prophylaxis in female mice. Our data provide further evidence that resilience-enhancing prophylactics may alter AMPAR-mediated glutamatergic transmission in CA3. Moreover, we show that prophylactics against stress-induced depressive-like behavior can be developed in a sex-specific manner and demonstrate that ovarian hormones are necessary for the prophylactic efficacy of (R,S)-ketamine and (2R,6R)-HNK in female mice.


Assuntos
Ketamina , Animais , Fenômenos Eletrofisiológicos , Feminino , Hipocampo/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacologia , Masculino , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Neuropsychopharmacology ; 45(6): 1068-1077, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035426

RESUMO

Social buffering occurs when the presence of a companion attenuates the physiological and/or behavioral effects of a stressful or fear-provoking event. It represents a way in which social interactions can immediately and potently modulate behavior. As such, social buffering is one mechanism by which strong social support increases resilience to mental illness. Although the behavioral and neuroendocrine impacts of social buffering are well studied in multiple species, including humans, the neuronal underpinnings of this behavioral phenomenon remain largely unexplored. Previous work has shown that the infralimbic prefrontal cortex (IL-PFC) is important for processing social information and, in separate studies, for modulating fear and anxiety. Thus, we hypothesized that socially active cells within the IL-PFC may integrate social information to modulate fear responsivity. To test this hypothesis, we employed social buffering paradigms in male and female mice. Similar to prior studies in rats, we found that the presence of a cagemate reduced freezing in fear- and anxiety-provoking contexts. In accordance with previous work, we demonstrated that interaction with a novel or familiar conspecific induces activity in the IL-PFC as evidenced by increased immediate early gene (IEG) expression. We then utilized an activity-dependent tagging murine line, the ArcCreERT2 mice, to express channelrhodopsin (ChR2) in neurons active during the social encoding of a new cagemate. We found that optogenetic reactivation of these socially active neuronal ensembles phenocopied the effects of cagemate presence in male and female mice in learned and innate fear contexts without being inherently rewarding or altering locomotion. These data suggest that a social neural ensemble within the IL-PFC may contribute to social buffering of fear. These neurons may represent a novel therapeutic target for fear and anxiety disorders.


Assuntos
Optogenética , Comportamento Social , Animais , Medo , Feminino , Masculino , Camundongos , Neurônios , Córtex Pré-Frontal , Ratos
19.
Neuropsychopharmacology ; 45(3): 542-552, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31600767

RESUMO

Enhancing stress resilience could protect against stress-induced psychiatric disorders in at-risk populations. We and others have previously reported that (R,S)-ketamine acts as a prophylactic against stress when administered 1 week before stress. While we have shown that the selective 5-hydroxytryptamine (5-HT) (serotonin) reuptake inhibitor (SSRI) fluoxetine (Flx) is ineffective as a prophylactic, we hypothesized that other serotonergic compounds such as serotonin 4 receptor (5-HT4R) agonists could act as prophylactics. We tested if three 5-HT4R agonists with varying affinity could protect against stress in two mouse strains by utilizing chronic corticosterone (CORT) administration or contextual fear conditioning (CFC). Mice were administered saline, (R,S)-ketamine, Flx, RS-67,333, prucalopride, or PF-04995274 at varying doses, and then 1 week later were subjected to chronic CORT or CFC. In C57BL/6N mice, chronic Flx administration attenuated CORT-induced weight changes and increased open-arm entries in the elevated plus maze (EPM). Chronic RS-67,333 administration attenuated CORT-mediated weight changes and protected against depressive- and anxiety-like behavior. In 129S6/SvEv mice, RS-67,333 attenuated learned fear in male, but not female mice. RS-67,333 was ineffective against stress-induced depressive-like behavior in the forced swim test (FST), but prevented anxiety-like behavior in both sexes. Prucalopride and PF-04995274 attenuated learned fear and decreased stress-induced depressive-like behavior. Electrophysiological recordings following (R,S)-ketamine or prucalopride administration revealed that both drugs alter AMPA receptor-mediated synaptic transmission in CA3. These data show that in addition to (R,S)-ketamine, 5-HT4R agonists are also effective prophylactics against stress, suggesting that the 5-HT4R may be a novel target for prophylactic drug development.


Assuntos
Profilaxia Pré-Exposição/métodos , Agonistas do Receptor 5-HT4 de Serotonina/administração & dosagem , Estresse Psicológico/prevenção & controle , Estresse Psicológico/psicologia , Compostos de Anilina/administração & dosagem , Animais , Corticosterona/toxicidade , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Piperidinas/administração & dosagem , Receptores 5-HT4 de Serotonina/fisiologia , Estresse Psicológico/induzido quimicamente , Resultado do Tratamento
20.
Behav Brain Res ; 378: 112238, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31563463

RESUMO

Individuals with peripheral inflammation are a particularly vulnerable population for developing depression and are also more resistant towards traditional antidepressants. This signals the need for novel drugs that can effectively treat this patient population. Recently, we have demonstrated that (R,S)-ketamine is a prophylactic against a variety of stressors, but have yet to test if it is protective against inflammatory-induced vulnerability to a stressor. Here, male 129S6/SvEv mice were administered saline or (R,S)-ketamine (30 mg/kg) 6 days before an injection of vehicle (VEH) or lipopolysaccharide (LPS) (0.83 or 1.0 mg/kg, serotypes O111:B4 or O127:B8). Twenty-four hours after LPS administration, mice were administered a contextual fear conditioning (CFC) paradigm, followed by a context re-exposure and the forced swim test (FST). In a separate cohort, we tested if (R,S)-ketamine was effective as a prophylactic against polyinosinic-polycytidylic acid (PIC), a viral mimetic. (R,S)-ketamine was effective as a prophylactic for attenuating learned fear in the O111:B4 and O127:B8 strains of LPS. (R,S)-ketamine was also effective as a prophylactic for decreasing stress-induced depressive-like behavior in the O111:B4 and O127:B8 strains of LPS. Both of these effects were limited to administration of 1.0, but not 0.83 mg/kg of the O111:B4 and O127:B8 strains of LPS. (R,S)-ketamine was not effective against either stress phenotype following PIC administration. These data suggest that prophylactic (R,S)-ketamine may protect against selective inflammation-induced stress phenotypes following an inflammatory challenge. Future studies will be necessary to determine if (R,S)-ketamine can be useful in patient populations with peripheral inflammation.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressão/prevenção & controle , Inflamação/complicações , Ketamina/farmacologia , Estresse Psicológico/prevenção & controle , Animais , Antidepressivos/administração & dosagem , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Depressão/etiologia , Medo/fisiologia , Inflamação/induzido quimicamente , Ketamina/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos da Linhagem 129 , Estresse Psicológico/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...